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 Recent efforts in predicting rocket propulsion (RP-1) fuel performance through modeling 

put greater emphasis on obtaining detailed and accurate fuel properties, as well as to elucidate 

the relationships between fuel composition and their properties.  Herein, we study 

multidimensional chromatographic data obtained utilizing the instrumental platform that 

included comprehensive two-dimensional gas chromatography combined with time-of-flight 

mass spectrometry (GC × GC –TOFMS) to analyze RP-1 fuels.  For GC × GC separations, 

RTX-wax (polar stationary phase) and RTX-1 (non-polar stationary phase) columns were 

implemented for the primary and secondary dimensions, respectively, to separate the chemical 

compound classes (alkanes, cycloalkanes, aromatics, etc), providing a significant level of 

chemical compositional information.  The GC × GC – TOFMS data were analyzed using partial 

least-squares regression (PLS) chemometric analysis, specifically to model and predict advanced 

distillation curve (ADC) data for ten RP-1 fuels that were previously analyzed using the ADC 

method.  The PLS modeling provides insight into the chemical species that impact the observed 

changes in the previously collected ADC data.  The PLS modeling correlates compositional 

information found in the GC × GC – TOFMS chromatograms of each RP-1 fuel, and their 

respective ADC, and allows prediction of the ADC for each RP-1 fuel with good precision and 

accuracy.  The predictive power of the overall method via PLS modeling was assessed using 

leave-one-out cross-validation (LOOCV) yielding root-mean-square error of cross-validation 

(RMSECV) with low values, typically below 2.0 °C, at each % distilled measurement point 

during the ADC analysis.   

 

Keywords: GC × GC – TOFMS, partial least squares (PLS) analysis, advanced distillation curve 

(ADC), two-dimensional, gas chromatography, RP-1 fuel. 
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Introduction 51 
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 The chemical composition of a kerosene fuel, though complex, holds a key to 

understanding and altering the physical properties and performance of the fuel [1–7].  Achieving 

fine control over the chemical composition can be a difficult task.  It has become increasingly 

important to achieve further insight into fuel composition, as well as the sources of variation in 

the fuel composition to both maintain and control fuel performance, as well as to assess the 

performance of “field” fuels [1–5].  Fuel performance is inextricably tied to characterization, and 

the advanced distillation curve (ADC) method has demonstrated itself as a well suited approach 

for the analysis and characterization of complex fuels [8–10].  The ADC method is a state-of-the-

art approach to very accurately and precisely analyze the boiling curve of complex liquids.  

Samples (i.e., distillation fractions) may be obtained during the distillation, and can be further 

analyzed both qualitatively and quantitatively.   

 The ADC method was pioneered by Bruno and co-workers [2, 5, 8–20].  Briefly, the 

apparatus for the ADC method utilizes a round-bottom flask connected to an air cooled 

condenser, a receiver adapter and a calibrated volume receiver.  The flask is encased with a 

heater in an aluminum jacket.  Inside the flask are two thermocouples, suspended using a 

centering adapter: one thermocouple measures the temperature of the liquid analyzed, and the 

other thermocouple measures the temperature in the headspace above the liquid being distilled.  

Three bore scope ports are strategically located to inspect both the liquid and the thermocouples 

inside the apparatus.  The flask is connected to an air cooled condenser chilled with a vortex 

tube, wherein the distillate condenses.  The condenser, in turn, is connected to a special adapter 

where the drops of distillate fall into a small 0.05 mL “hammock.”  With the use of a syringe, the 

distillate may be sampled from the hammock for further analysis including, but not limited to, 
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gas chromatography (GC) [9–15], infrared spectroscopy [12], and measurements of enthalpy of 

combustion [14].  After the adapter, the distillate reaches the calibrated volume receiver.  More 

recently, a variation of the ADC method apparatus was implemented that controls the internal 

pressure, preventing sample degradation due to reactions that may potentially occur at high 

temperatures when analyzing samples containing low-volatility compounds [17].  This feature 

was achieved by sealing every connection between parts of the apparatus and using a commercial 

pressure controller.  Sampling is performed with a reduced pressure balance syringe.   
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 The ADC method has been instrumental in the study of a variety of complex liquid 

samples including, but not limited to, crude oil [12], gasoline [16], biodiesel fuel [17, 19], jet fuel 

[5, 10, 11], motor oil [18],  and rocket propellant (RP) [2, 9, 10, 13–15, 20].  The ADC method 

can be used not only to provide information regarding sample composition, but also to study the 

thermodynamic and physical properties, chemical properties such as corrosive effects [12], 

enthalpy of combustion (through the use of each distillate fraction to determine the overall 

enthalpy of combustion) [5, 10, 11, 15–16], and the influence of thermal stress on fuels [15]. 

Furthermore, the variability in fuel composition and its impact on thermophysical properties 

have also been investigated [20].   

 In conjunction with implementing the ADC method, it has become apparent that 

additional chemical composition information should be evaluated to strengthen and ultimately 

apply the information gained from ADC data.  For this purpose, in this report we applied the 

powerful chemical analysis tool known as comprehensive two-dimensional gas chromatography 

combined with time-of-flight mass spectrometry (GC × GC – TOFMS), using a reverse column 

GC × GC configuration (i.e., polar primary dimension column coupled with a non-polar 

secondary dimension column) [21] building from our previous study [22], to improve the 
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separation of the various compound classes (eg. alkanes, cycloalkanes, aromatics, etc), and to 

facilitate extraction of chemical information from a set of ten RP-1 fuel samples.  Using 

chemometrics, we then explored the connection between chemical composition via GC × GC – 

TOFMS chromatographic data and the ADC data from the RP-1 fuels.  Indeed, GC × GC – 

TOFMS is ideally suited for use in fuels analysis [21–31]. 

 To help glean useful information, multivariate “chemometric” data analysis methods 

have been developed.  Chemometrics have been shown to be able to take advantage of the 

three-way data provided by the GC × GC – TOFMS instrumental platform, to help reveal 

similarities and/or differences between chromatograms [22–25, 32].  Partial least-squares (PLS) 

analysis can be used to associate variance in fuel composition to measured physical properties 

[22].  Detailed information on the theory of PLS can be found elsewhere [34–36].  In this study, 

GC × GC – TOFMS chromatographic data of RP-1 fuels and their respective ADC data are 

analyzed using PLS to provide useful information on chemical compounds that significantly 

influence the RP-1 fuel properties via inspection of the linear regression vector (LRV) of each 

PLS model.  This analysis is accomplished by selecting an appropriate number of latent variables 

(LVs) that are used to calculate loadings that capture the variance (i.e. chemical information) in 

the GC × GC –
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 TOFMS chromatograms that have the maximum covariance with corresponding 

information in the ADC data set.  Our goals are to demonstrate and validate the use of PLS 

modeling, and to relate chemical information obtained from the GC × GC – TOFMS 

chromatograms to the corresponding ADC for each RP-1 fuel, and ultimately to predict the ADC 

temperatures of a given RP-1 fuel, without directly making those measurements [2].  This 

chemical analysis approach has the ability to provide insight into the chemical composition 

changes as a function of % distilled (and distillation temperature during the ADC experiment). 
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Eventually, this chemical analysis approach will provide insight, and to aid, in the process of 

optimization of fuel performance.  

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

Experimental 

GC × GC – TOFMS data collection 

 The full details on the GC × GC – TOFMS instrumental platform and methodology can 

be found in our previous report [22].   Ten RP-1 fuel samples were obtained from the Air Force 

Research Laboratory (AFRL), Edwards AFB, CA, and are listed in Table. 1.  The ADC data 

were obtained from an earlier report [2].  The GC × GC – TOFMS instrument used was an 

Agilent 6890A GC with a 7683B auto-injector (Agilent Technologies, Palo Alto, CA, USA) 

coupled to a LECO Pegasus-III TOFMS (LECO, St. Joseph, MI, USA). Isobaric mode was used 

with an inlet pressure of 35 psig (241 kPa).  The auto-injector was set to 1 μL injection, a 200:1 

split injection with helium carrier gas was used, and acetone was used as the solvent rinse.  The 

first GC × GC separation dimension (primary column) used a RTX-wax (polar) stationary phase, 

of 30 m in length, 250 μm i.d., and a 0.5 μm film.  The modulation period was set to 2.5 s.  The 

second separation dimension (secondary column) used a 1.2 m RTX-1, of 100 μm i.d., and a 0.18 

μm film.  The GC oven was initially set to 40 °C for 2 min and ramped to 225 °C at a rate of 6 

°C/min; the final temperature was maintained for 3 min.  The GC inlet was set to 225 °C and the 

transfer line temperature was 235 °C.  The thermal modulator offset was 20 °C, with a hot pulse 

time of 0.59 s and a 0.35 s cool time.  The secondary column oven temperature control was not 

used while still achieving a suitable GC × GC separation, and the secondary oven (housed in the 

primary oven) was left open and set at the same nominal temperature as the primary oven.  The 

TOFMS data acquisition parameters were set with a 120 s acquisition delay, a mass channel 

(m/z) scan range of 35-334 amu, with a 100 Hz acquisition rate. 
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Data analysis: PLS of GC × GC – TOFMS data 

 The computer used for analysis was an Intel Core i-3-2120 @3.3 GHz, with 16.0 GB of 

RAM, and included a 60 GB SSD drive used for the purpose of a page disc (“fast” virtual RAM).  

Two replicate sets of RP-1 GC × GC – TOFMS chromatograms were analyzed as separate sets of 

PLS models as described below, and the results for both replicates are provided herein, overlaid 

in figures, similar to previous reports [22, 30].  Chromatographic runs were imported to 

MATLAB2009b (MathWorks, Natick MA) using the ‘peg2mat’ function [22, 37–38]. 
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 The GC × GC – TOFMS data underwent baseline correction using in-house software as reported 

previously [22], and to help save memory and computation time, the data also underwent a 

condensing procedure [22, 39] that included the following operations.  First, the 

chromatographic data were binned (for 2 points in each chromatographic dimension, resulting in 

GC × GC – TOFMS chromatograms that are 25% of their original size).  The binning also 

addressed any minor run-to-run misalignment in the data [39].  Second, in the TOFMS domain, 

omitting m/z channels that were unselective and m/z channels that do not exhibit signal greater 

than five times the standard deviation of baseline corrected noise (these m/z are: 35-37,43-47, 51, 

58-62, 73-76, 87-90, 101-103, 115-118, 133, 207, 214-334).  Third, the signal for uninformative 

temporal regions was set to 0, specifically, GC × GC regions dominated by column bleed or with 

no analyte compound signal (these regions were initially inspected while taking chromatogram 

variability into consideration to prevent the chance of removing compositional variation).  The 

chromatographic and mass spectral dimensions of the GC × GC – TOFMS data for each RP-1 

fuel was vectorized (from 10 fuels ×125 secondary column data points ×405 primary column 

data points ×148 mass channels  to 10 fuels × 7,492,500 unfolded data points) prior to PLS 

analysis along with the ADC (in vector form) for each RP-1 fuel.  PLS analysis was performed 
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using PLS Toolbox 6.7 (Eigenvector Research Inc., Wenatchee WA), with mean centering of the 

GC × GC – TOFMS data and auto scaling (subtracting the mean and dividing by the standard 

deviation) for the ADC temperature values.  
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Data analysis: PLS of ADC data 

 Using the ADC method for a RP-1 fuel analysis, the temperature is recorded at the 

moment a specific percentage of the fuel has been distilled (% distilled point) [2].  For this study, 

temperatures for the ADC method were measured at nineteen % distilled points: 0.025, 5, 10, 15, 

20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, and 90 [2].  Rather than construct a single 

PLS model for the entire ADC data set (simultaneously on all nineteen measurement points 

along the % distilled axis of the ADC for all fuels in the sample set), a series of 19 PLS models 

(a PLS model at each % distilled point) were produced.  Performing the PLS analysis using a 

series of 19 models offered several key advantages.  First, this approach lessened the restrictions 

on PLS when constructing the model(s).  Second, this approach offered the ability to change the 

number of LVs at different % distilled points in the ADC (if necessary).  Different numbers of 

LVs can be expected because the composition of a fuel is known to change over the course of the 

distillation, i.e. the GC × GC – TOFMS chromatographic data represents the initial chemical 

composition of a given fuel, however the composition at a given % distilled is a subset of this 

composition, with possibly different relative concentrations for the various compounds present.  

A third important advantage for constructing a series of 19 PLS models was to save computation 

time.  Consider modeling the entire ADC data set (10 fuels × 19 % distilled points) coupled with 

the unfolded GC × GC – TOFMS chromatograms (as stated previously, 7,492,500 unfolded data 

points per fuel): PLS would require a considerable amount of computer memory (about 13 GB), 

and the computation time would be prohibitively long, and on some computer systems this 
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computational exercise would fail due to memory constraints.  In contrast, applying PLS on the 

unfolded GC × GC – TOFMS chromatograms at one % distilled point at a time required fewer 

LVs and significantly less memory (around 6.5GB), and required less than a minute to compute 

per PLS model. 

189 
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198 

PLS modeling of GC × GC – TOFMS and ADC data 

 The PLS modeling was validated using leave-one-out-cross-validation (LOOCV).  

Briefly, LOOCV involves a series of PLS models from (n-1) samples from the original n sample 

data set, using the nth sample to predict values from the constructed (n-1) model.  After all 

combinations are analyzed the root-mean-square of error of cross-validation of the residuals of 

the PLS models (RMSECV) was calculated [40]: 

       (1) 199 
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210 

Moreover, RMSECV results were also used to help determine the most appropriate number of 

LVs to use for the PLS models. 

 At each step in the analytical procedure, the LRVs of the PLS models were inspected to 

qualitatively verify that the connections the PLS models made between the chromatographic 

information (GC × GC – TOFMS data) and physical measurements (ADC data) were both 

logical, and that the LRVs from consecutive models appear continuous.  Using information 

provided by the LRVs, identification of compounds of interest in the GC × GC – TOFMS data 

was performed via ChromaTOF V.3.32 (LECO Corporation, St. Joseph, MI, USA), and in-house 

software for nontarget PARAFAC for well resolved and unresolved peaks, respectively [26].  

The NIST11 V2.0g mass spectral library (National Institute of Standards and Technology, 

Boulder CO, USA) was used for mass spectral identification. 
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Results and discussion 

 A representative GC × GC – TOFMS chromatogram of an RP-1 fuel is provided in 

Fig.1a. In this figure the total ion current (TIC) signal is plotted for the GC × GC separation of 

the RP-1 fuel LB073009-08.  To further demonstrate the separation power for complex samples 

such as RP-1, in Fig.  1b, c and d, are provided specific regions of the GC × GC separation with 

a representative alkane, cycloalkane, and aromatic compound indicated, respectively.  Each of 

the representative compounds indicated also are key compounds identified in the PLS modeling 

that will be presented herein.  In Fig. 1b is provided a region of Fig. 1a at the selective mass 

channel m/z 57; the highlighted peak (located at 8.75 min and 1.94 s on the primary and 

secondary dimensions, respectively) has been identified as decane. In Fig. 1c is provided a 

region of Fig. 1a at the selective mass channel m/z 136; the highlighted peak (located at 15.00 

min and 1.17 s on the primary and secondary dimensions, respectively) has been identified as the 

adamantane. Finally, in Fig. 1d is provided a region of Fig. 1a at the selective mass channel m/z 

105; the highlighted peak (located at 19.29 min and 0.95 s on the primary and secondary 

dimensions, respectively) has been identified as methylbutylbenzene. 
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 The previously measured ADC data for all ten RP-1 fuels are provided in Fig. 2a [2].  

The measured ADC data were obtained at a % distilled range from 0.025% to 90%.  The 

recorded temperatures for the ADC data set range from 207.2°C to 213.5°C at 0.025% distilled, 

to 235.9°C to 258.1°C at 90% distilled.  At various % distilled values the ADC for several fuel 

pairs cross one another, which may potentially make the PLS modeling of ADC data more 

challenging.  For clarity, in Fig. 2b two representative ADCs are provided that approximately 

span the range of temperatures at each % distilled.  In Fig. 2b, RP-1 fuel LB073009-06 
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represents the highest measured temperatures for the ten fuels, while RP-1 fuel LB073009-02 

exhibited some of the lowest recorded temperatures. 
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 For comparison to Fig 2b, the ADCs for RP-1 fuels LB073009-06 and LB073009-02 

predicted using PLS during the LOOCV procedure are provided in Fig. 2c.  Figs. 2b and 2c are 

qualitatively very similar indicating the ability of the PLS models to accurately predict fuel 

physical data, but in order to obtain a more quantitative evaluation of the accuracy of the PLS 

modeling, residuals for each ADC were calculated at each % distilled value.  The ADC residuals 

were obtained by subtracting a measured ADC from the ADC predicted using PLS.  The 

residuals imply an accuracy of the PLS modeling to within +/- 2.5 °C range, which is deemed 

reasonable for this initial study.  

 Examination of the LRVs of the PLS models provide additional information, 

complementary to the ADCs predicted from the PLS models.  In Fig. 3a-c, three of the nineteen 

LRVs are provided (one for each PLS model constructed, other LRVs omitted for brevity): one 

LRV from the beginning (0.025% distilled), middle (45% distilled), and end (90% distilled) of 

the ADC.   Through inspection of the positive LRV values, the corresponding peaks tend to be 

analyte compounds eluting after ~10 min for alkanes, after ~15 min for the cycloalkanes, and di-

and tri-cycloalkanes, and after ~17 min for aromatic groups to a lesser extent.  These results in 

the LRVs display a general pattern that the less volatile compounds contribute positively to an 

ADC, suggesting less volatile compounds increase the overall predicted temperature of the ADC 

at a given % distilled point.  As the % distilled approaches 90%, the intensities of the positively 

contributing peaks in the LRVs shift to the right to less volatile compounds, suggesting these 

compounds may contribute more with respect to the predicted ADC temperature.  An interesting 

observation is that some regions (and peaks therein) in the LRVs change sign as the distillation 
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runs toward completion; a good example is a cluster of peaks located ~13 and 17 min in the 

primary separation dimension and ~1.2 and 1.5 s in the secondary separation dimension.  

Although the peaks in the LRVs in this separation region are generally positive at 0.025% 

distilled, as the distillation progresses the magnitude of many peaks diminish until their 

contribution is zero, then as the distillation progresses further the signs of these peaks change to 

negative with a corresponding increase in magnitude.  This suggests that early in the distillation, 

analyte compounds corresponding to peaks in the LRV that are changing from positive to 

negative during the distillation would contribute to increasing the predicted ADC temperature, 

but approaching the end of the distillation these compounds would contribute to decreasing the 

predicted ADC temperature.  These compounds seem to act analogous to a chemical buffer in 

that as buffers moderate changes in pH, these compounds moderate the temperature range of the 

distillation, i.e. the more of these compounds present the narrower the temperature range over 

which the distillation will occur.   
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 An interesting phenomenon is observed at the higher % distilled values, as shown in Fig. 

3c.  There are several unexpected, slightly positive peaks in the LRV region between 5 and 15 

min.  At 90% distilled the chemical composition of the fuels is actually a subset of the fuel 

composition that is analyzed by the GC × GC – TOFMS instrument, since at 90% distilled the 

more volatile compounds will have mostly boiled off, and there likely have been some 

significant changes in the relative compositions of the various compounds in the fuels.  Thus, the 

positive value peaks in the LRVs in the region between 5 and 15 min may be attributed to 

covariance between compounds that are more volatile and compounds that are less volatile in the 

PLS models (due to inherent similarities of the RP-1 lab blends), and not necessarily because 
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these LRV peaks are chemically meaningful; this may lead to a higher source of error in PLS 

models at higher % distilled values.   
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 Inspection of the negative regions (and peaks therein) in all of the LRVs, analyte 

compounds between 5 and 15 min generally have negative values, suggesting the earlier and 

more volatile compounds lower the overall temperature of the ADC at a given % distilled.  As 

with the positive LRV values, as the distillation progresses from 0.025% to 90% distilled, the 

intensity shifts from left to right.  As the temperature rises, the more volatile compounds 

preferentially evaporate, so their decreased presence reduces their influence on the overall 

temperature at higher % distilled values, while the heavier, less volatile compounds contribute 

more.  A list of representative, yet key, analyte compounds of interest, indicated by large peak 

magnitudes in the LRVs were identified and summarized in Tables 2, 3, and 4. For example, 

methylbutylbenzene (identified in Fig. 1d) is listed in Table 2, and is one of the major positively 

contributing compounds to the LRV. Decane (identified in Fig. 1b), is listed in Table 3, and is 

one of the major negatively contributing compounds to the LRV.  Adamantane (identified in Fig. 

1c) in Table 4 is one of the significant compounds that change sign with respect to their 

contribution as the ADC nears completion.  Identification of compounds that impact the ADC 

can play an important role in understanding the information provided by the ADC experiment, 

and ultimately could play a key role in improving fuel formulation and performance.  

 Finally, we present the LOOCV summary using the RMSECV calculation defined in Eq. 

(1) as a function of the % distilled value.  The LOOCV procedure for the PLS modeling was 

performed using both sets of GC × GC – TOFMS data with the ADC data set.  The most 

appropriate number of latent variables (LVs) was determined to be 4, based upon the analysis of 

scree plots [22].  The LOOCV summary in Fig. 4 provides an assessment of the accuracy of the 
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PLS models.  The residuals (Fig. 2d) of many of the RP-1 fuels cross at 80% distilled along with 

a sharp increase in the RMSECV in Fig. 4 (at 85% and 90% distilled).  These changes are linked 

to the changes in fuel composition as more fuel is distilled and the resulting covariance between 

compounds of different volatility that appear in the chromatograms.  In principle, distillate 

fractions of RP-1 fuels could be collected at each % distilled and analyzed with the GC × GC – 

TOFMS, and the resulting chromatograms could be used to construct the PLS models using their 

respective temperatures on the ADC data.  However, this approach is more laborious and 

impractical, requiring a prohibitively large set of samples, e.g., 190 samples, from 10 fuels x 19 

ADC % distilled points (instead of only10 fuel samples directly analyzed herein in order to 

demonstrate the methodology principles).  The primary benefit of collecting and analyzing 

distillate fractions at each % distilled value would be to reduce the apparent covariance, thus 

making the RMSECV values (in Fig. 4) consistently smaller across the ADC.  Another way to 

think about this source of the error while approaching the end of the distillation is that PLS is 

using the chromatograms of un-distilled RP-1 fuels to “predict the future” ADC values.  It is 

likely that better PLS models could be constructed from chromatograms generated from the RP-1 

fuels sampled at each % distilled.  Using a respective chromatogram of a fuel at each distillation 

point would have been more representative of the fuel and would have helped minimize the error 

of the PLS models However, obtaining said RP-1 samples at various stages of distillation poses a 

significantly more laborious proposition. 
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Conclusions 

 In this report we have demonstrated the use of PLS on GC × GC – TOFMS 

chromatograms of RP-1 fuels, and their respective ADCs.  The PLS modeling provides insight 
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into how the chemical composition weighs differently in determining the temperature for a given 

% distilled value across the ADC.  Compounds were discovered that correlate with narrowing 

the temperature range of which the distillation occurs.  The predictive power of the PLS 

modeling assessed using LOOCV was found to be extremely powerful, yielding RMSECV with 

low values, typically below 2.0 °C, at each % distilled measurement point during the ADC 

analysis.   This outcome bodes well for potential future studies with expanded fuel sample sets. 
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Tables 
 
Table 1. RP-1 Fuel Set [22]. 

Sample number NIST Number [1-2]  AFRL Designation 
1 11 LB080409-01 
2 10 LB073009-06 
3 9 LB073009-08 
4 8 LB080409-05 
5 7 LB073009-05 
6 5 LB073009-01 
7 4 LB073009-09 
8 1 LB073009-02 
9 2 LB073009-03 
10 3 XC2521HW10 

 516 

517 
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519 
520 
521 
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Table 2. Major contributing compounds identified in the LRVs that contribute positively, per the 
blue features in Fig. 3a, b, c. The retention time on the primary column is labeled 1tR, and on the 
secondary column as 2tR. The mass spectral match value is labeled MV. 

522 
523 
524 
525 
526 

 
 

# Compound Identification 1tR (min) 2tR (s) MV Compound Class 
1 Trimethyldodecane (C15H32) 17.42 2.23 924 alkanes 
2 3-Methyltridecane (C14H30) 19.88 2.00 910 alkanes 
3 3-Methyltetradecane (C15H32) 20.17 1.96 922 alkanes 
4 Heptylcyclohexane (C13H26) 18.75 1.62 889 cycloalkanes 
5 Octylcyclohexane (C14H28) 21.25 1.60 909 cycloalkanes 
6 Nonylcyclohexane (C15H30) 23.63 1.60 929 cycloalkanes 
7 Methyl-bicyclohexyl (C13H24) 20.79 1.36 841 di- & tri- cycloalkanes 
8 Hexamethyloctahydro-1H-indene (C15H28) 22.21 1.43 832 di- & tri- cycloalkanes 
9 Bicyclohexane (C15H28) 20.00 1.38 907 di- & tri- cycloalkanes 

10 Methylbutylbenzene (C11H16) 19.29 0.95 908 mono-aromatics 
11 Azulene (C10H8) 26.83 0.76 919 di-aromatics 
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Table 3. Major contributing compounds identified in the LRVs that contribute negatively per the 
red features in Fig. 3a, b, c. 
 
 

# Compound Identification 1tR (min) 2tR(s) MV Compound Class 
1 Methylnonane (C10H22) 7.46 1.94 937 alkanes 
2 Decane (C10H22) 8.21 1.94 960 alkanes 
3 Dimethylnonane (C11H24) 8.42 2.18 931 alkanes 
4 Trimethylcyclohexane (C9H18) 7.42 1.40 943 cycloalkanes 
5 Methylpropylcyclohexane (C10H20) 8.92 1.63 873 cycloalkanes 
6 Ethyldimethylcyclohexane (C10H20) 9.21 1.53 864 cycloalkanes 
7 cis-Octahydro-1H-indene (C9H16) 11.17 1.24 948 di- & tri- cycloalkanes 
8 Dimethylbicyclo[3.2.1]octane (C10H18) 11.96 1.34 890 di- & tri- cycloalkanes 
9 Not found at significant level       mono-aromatics 

10 Not found at significant level       di-aromatics 
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Table 4. Compounds of interest identified in the LRVs that exhibit a sign change across the ADC 
(from positive to negative), per Fig. 3. 

539 
540 
541   

# Compound Identication 1tR (min) 2tR (s) MV Compound Class 
1 Trimethyldecane (C13H28) 14.83 2.24 898 alkanes 
2 Methyldodecane isomer (C13H28) 14.67 2.10 926 alkanes 
3 Methyldodecane isomer (C13H28) 15.00 2.10 940 alkanes 
4 Not found at significant level       cycloalkanes 
5 Not found at significant level       cycloalkanes 
6 trans-decahydronaphthalene(C10H18) 12.83 1.35 930 di- & tri- cycloalkanes 
7 Adamantane (C10H16) 15.00 1.17 959 di- & tri- cycloalkanes 
8 Methyldecahydronaphthalene (C11H20) 14.00 1.42 940 di- & tri- cycloalkanes 
9 Not found at significant level       mono-aromatics 

10 Not found at significant level       di-aromatics 
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Figure Captions 
 
Fig. 1 (a) Total ion current (TIC) chromatogram of the RP-1 fuel LB073009-08, collected using 
GC × GC – TOFMS. Compound classes are indicated. (b) Region between 5 min and 12 min in 
the primary dimension and 1.7 s and 2.5 s in the secondary dimension at m/z 57, the upper left 
box in (a), with n-decane identified.  (c) Region between 13 min and 19 min in the primary 
dimension and 1.0 s and 1.8 s in the secondary dimension at m/z 136, the middle box in (a), with 
adamantane identified.  (d) Region between 18 min and 24 min in the primary dimension and 0.8 
s and 1.2 s in the secondary dimension at m/z 105, the lower right box in (a), with 
methylbutylbenzene identified. 
 
Fig. 2  (a) Measured ADC data for the ten RP-1 fuels (listed in Table 1) are provided.  (b) The 
ADC of two RP-1 fuels are provided that span the approximate range of the ADC data set: top 
LB073009-06, bottom LB073009-02.  (c) The PLS modeled ADC for the two fuels in part (b) 
are provided: top LB073009-06, bottom LB073009-02. (d) The ADC residuals for all ten of the 
RP-1 fuels, calculated as the predicted ADC obtained from the cross validation predicted PLS 
models minus the measured ADC. 
 
Fig. 3  (a) Linear regression vector (LRV) of a 4LV PLS model at 0.025% distilled of the ADC, 
with blue indicating a positive contribution to the LRV and red indicating a negative 
contribution.  (b) LRV of a 4LV PLS model at 45% distilled (the middle) of the ADC.  (c) LRV 
of a 4LV PLS model at 90% distilled (the end) of the ADC. 
 
Fig. 4  Validation results are provided for the PLS models of the ADCs for the ten RP-1 fuels in 
Table 1 using LOOCV. The RMSECV values for PLS modeling of both sets of GC × GC – 
TOFMS data are indicated as a function of % distilled. 
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Figure 1A 570 
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Figure 1B 590 
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Figure 1C 607 
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Figure 1D 625 
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Figure 2A 643 
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Figure 2B 669 
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Figure 2C 685 
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Figure 2D 699 
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Figure 3A 723 
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Figure 3B 742 
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Figure 3C 761 
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